专栏 l 多尺度算法在增材制造点阵结构仿真分析中的应用(下篇)

special_1

quote_1
正如建筑用的空心砖,胞元的应用减少了材料的使用,有效帮助实现轻量化,而与此同时,如何保证仍然满足力学性能的要求,则成为建模界“才下眉头、却上心头”萦绕不散的要紧事。四种常见的结构包括蜂窝,开孔泡沫,闭孔泡沫,点阵结构。

点阵结构的材料特点是重量轻、高强度比和高特定刚性。并且带来各种热力学特征,点阵结构的超轻型结构适合用在抗冲击/爆炸系统、或者充当散热介质、声振、微波吸收结构和驱动系统中。

那么如何解决增材制造点阵结构设计中遇到的CAE分析问题?谷.专栏在前不久特别推荐了《多尺度算法在增材制造点阵结构仿真分析中的应用(上篇)》 。本期,谷.专栏将推荐《多尺度算法在增材制造点阵结构仿真分析中的应用(下篇)》。quote_2

pera_global

block  多尺度算法在点阵结构分析中的准确性

上篇介绍了增材点阵结构仿真分析软件 Lattice Simulation 的多尺度算法,以及 Lattice Simulation是如何高效、快速地帮助用户解决增材点阵结构设计中遇到的CAE分析问题的。下篇将对 Lattice Simulation 和 ANSYS Discovery 进行分析对比,以说明 Lattice Simulation 多尺度算法在点阵结构分析中的准确性。

181129-1
图 1 点阵结构

上篇中提到,Lattice Simulation 是一款用于增材点阵结构分析的工具,具有用户自定义和内置点阵结构设计两种方式,已集成在 ANSYS add-in 扩展工具中。基于多尺度算法,用户可以采用等效均质化技术对点阵结构进行有限元分析。并且提取非均质化点阵结构的等效材料参数,在均质化等效实体模型宏观力学分析后,可以通过局部分析对胞元结构进行详细的应力校核。

 

181129-2

图2 点阵结构分析工具功能

181129-3

图3 Workbench点阵结构模块分析流程

ANSYS Discovery 作为新一代的仿真分析应用工具,其最大特点是能够即时得到分析结果。

然而,其对硬件性能(如 GPU)要求比较高,一般的电脑配置是不能够运行计算的。在结构分析中,仅适用于线弹性分析,不能够进行非线性分析(包括材料非线性、接触非线性和几何非线性等)、瞬态动力学及优化设计等。因此,在线弹性范围内,以下将 Lattice Simulation 和ANSYS Discovery 进行分析对比。

- 刚度和强度分析

模型 1 如下图 4、图 5 所示,采用 ANSYS Discovery 和 ANSYS Mechanical 进行对比,前者直接对点阵结构进行力学分析,后者对等效后的均质化点阵进行力学分析,该模型用于验证刚度计算的准确性。

181129-4
图4 点阵结构几何模型

 

181129-5

图5 点阵结构及等效均质化结构剖面图

181129-10

表 1 模型几何、材料及载荷参数表

从图 6 可以看出,ANSYS Discovery 分析得到的变形结果为 0.393mm,ANSYS Mechanical 分析得到的变形结果为 0.384mm,相差大约为 0.01mm,结果非常一致。

等效应力分布存在一些差异,主要区别是 ANSYS Discovery 是对点阵结构进行直接分析,最大应力存在于细观点阵结构上面,导致产生较大的应力值 0.24MPa。而采用 ANSYS Mechanical 对等效均质化的点阵结构进行分析,由于不存在细观胞元结构,所以所得到的应力最大值位于圆孔面与侧面交界处下部,等效应力幅值为 0.18MPa。

实际上,通过调整云图刻度标尺,可以发现等效应力分布云图吻合很好。并且在该位置 ANSYS Discovery 的计算结果与之十分相近。误差带来的原因是由边界效应产生的。

最后,通过对胞元结构进行详细应力校核,如图 3c 所示。等效应力云图非常吻合,最大应力幅值误差为 1.2%。因此,可以看出 Lattice Simulation 多尺度算法在分析点阵结构刚度和强度问题上具有很高的计算精度。

181129-7
图6 分析结构对比

- 模态分析

模型 2 如下图 7、图 8 所示,采用 ANSYS Discovery 和 ANSYS Mechanical 进行对比,前者直接对点阵结构进行模态分析,后者对等效均质化实体点阵结构进行分析,该模型用于验证模态计算的准确性。

181129-8
图7 点阵结构几何模型

181129-9
图8 点阵结构及等效均质化结构剖面图

181129-10

表 2 几何、材料及载荷表

从表3可以看出,ANSYS Discovery 计算得到的前3 阶模态的结果与 ANSYS Mechanical 得到的结果吻合很好。误差产生的主要原因和前述刚度分析一样,即 spaceclaim 生成的点阵结构存在一些边界效应,从而导致模态分析上与等效均质化实体模型存在一些误差。

第 1 阶和第 2 阶频率非常接近,误差分别为 0.1%和 0.5%。第 3 阶误差为 2.6%,说明边界效应对该阶模态影响较大。消除边界效应可进一步减小误差,提高分析精度。

用户可以通过建立高精度的 CAD 模型,避免边界效应产生。同时,保真度也是误差来源的一个原因,通过提高 ANSYS Discovery 的分析的保真度,可有效提高计算精度。然而,计算时间会显著增加。因此,用户需要平衡保真度和计算成本。

181129-11

表 3 模态分析对比表

block 小结

本文首先对 Lattice Simulation 这款点阵结构分析工具进行了阐述,然后结合实际案例对 ANSYS Discovery 和 Lattice Simulation 的分析进行了对比,刚度和模态对比结果显示两者的计算结果吻合很好。导致误差的原因也做了说明,一方面是点阵结构存在一定的边界效应,另一方面是ANSYS Discovery 存在保真度问题。对于前者,需要用户在建立点阵结构模型时,尽量消除边界效应,后者则需要用户平衡计算成本和精度。

综上所述,可以看出 Lattice Simulation的多尺度算法可以有效地减少建模难度,并进行高效求解计算,同时能够保证很高的计算精度。

writer

段卫毅,男,德国Ingolstat&Landshut大学应用计算力学硕士,现为安世中德结构仿真咨询专家,10年以上仿真分析经验,专长于显式动力学分析、多尺度分析和优化设计等。

文章来源:安世亚太

资料下载,请加入3D科学谷3D产业链QQ群:529965687
更多信息或查找往期文章,请登陆www.51shape.com,在首页搜索关键词
网站投稿请发送至2509957133@qq.com

分享:

你可能也喜欢...